Атомный проект Ядерный арсенал АЭС Ядерная энергия Физика Ядерные реакторы ТЭС Экология Начертательная геометрия Выполнение чертежей AutoCAD Технические чертежи Ремонт ПК Накопители Звуковая плата Математика

Лабораторный практикум по Сопромату

Расчет заклепок на срез

Мы изучали, что при простом растяжении или простом сжатии две части стержня, разделенные наклонным сечением, стремятся не только оторваться друг от друга, но и сдвинуться одна относительно другой. Растяжению сопротивляются нормальные, а сдвигу — касательные напряжения.

На практике целый ряд деталей и элементов конструкций работает в таких условиях, что внешние силы стремятся их разрушить именно путем сдвига.

В соответствии с этим при проверке прочности таких элементов на первый план выступают касательные напряжения. Простейшими примерами подобных деталей являются болтовые и заклепочные соединения. Заклепки во многих случаях уже вытеснены сваркой; однако они имеют еще очень большое применение для соединения частей всякого рода металлических конструкций: стропил, ферм мостов, кранов, для соединения листов в котлах, судах, резервуарах и т. п. Для образования заклепочного соединения в обоих листах просверливают или продавливают отверстия. В них закладывается нагретый до красного каления стержень заклепки с одной головкой; другой конец заклепки расклепывается ударами специального молотка или давлением гидравлического пресса (клепальной машины) для образования второй головки. Мелкие заклепки (малого диаметра — меньше 8 мм) ставятся в холодном состоянии (авиационные конструкции).

Для изучения работы заклепок рассмотрим простейший пример заклепочного соединения (рис.5.16). Шесть заклепок, расположенных в два ряда, соединяют два листа внахлестку. Под действием сил Р эти листы стремятся сдвинуться один по другому, чему препятствуют заклепки, на которые и будет передаваться действие сил P).


Рис.5.16.

Для проверки прочности заклепок применим общий порядок решения задач сопротивления материалов.

ПРИМЕНЕНИЕ ЭВМ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

 Введенные во всех высших и средних технических учебных заведениях новые учебные планы и программы создают необходимые объективные условия для широкого использования ЭВМ. Рациональность использования ЭВМ особо ощутима при расчете статически неопределимых систем. Однако и при расчете некоторых статически определимых систем могут быть использованы ЭВМ. Это в первую очередь относится к таким задачам, решение которых состоит из большого числа аналогичных последовательных операций. Вычисление моментов инерции плоских составных сечений

Задача 9.1.1. Найти координаты центра тяжести и вычислить главные моменты инерции для составного сечения

Аналитический расчет кривых брусьев малой кривизны

Статические моменты сечения

Статическим моментом плоского сечения относительно некоторой оси называется, взятая по всей его площади А, сумма произведений площадей элементарных площадок dA на их расстояния от этой оси

Моменты инерции плоских сечений простой формы

Моменты инерции простых сечений Вычислим моменты инерции простейших фигур.

Пример. Определить момент инерции симметричного сечения, показанного на рис. 4.13, относительно вертикальной оси симметрии y. Двутавр №10 (ГОСТ 8239-56). Швеллер №5 (ГОСТ 8240-56).

Главные оси инерции и главные моменты инерции С изменением угла поворота осей каждая из величин и меняется, а сумма их остается неизменной. Следовательно, существует такое значение , при котором моменты инерции достигают экстремальных значений, т.е. один из моментов инерции достигает своего максимального значения, в то время другой момент инерции принимает минимальное значение.

Кручение, сдвиг, срез Кручением называют деформацию, возникающую при действии на стержень пары сил, расположенной в плоскости, перпендикулярной к его оси

Условие прочности при кручении вала круглого и кольцевого сечения

Кручение бруса с некруглым поперечным сечением Определение напряжений в брусе с некруглым поперечным сечением представляет собой сложную задачу, которая не может быть решена методами сопротивления материалов. Причина заключается в том, что для некруглого поперечного сечения упрощающая гипотеза плоских сечений, оказывается неприемлемой. В данном случае поперечные сечения существенно искривляются, в результате чего заметно меняется картина распределения напряжений.

На каждую заклепку передаются по две равные и прямо противоположные силы: одна—от первого листа, другая — от второго. Опытные исследования показывают, что одни из заклепок ряда нагружаются больше, другие — меньше. Однако к моменту разрушения усилия, передающиеся на различные заклепки, более или менее выравниваются за счет пластических деформаций. Поэтому принято считать, что все заклепки работают одинаково. Таким образом, при заклепках в соединении, изображенном на рис.5.16, на каждую из них действуют по две равные и противоположные силы (рис.5.17); эти силы передаются на заклепку путем нажима соответствующего листа на боковую полуцилиндрическую поверхность стержня. Силы стремятся перерезать заклепку по плоскости mk раздела обоих листов.


Рис.5.17.

Для вычисления напряжений, действующих по этой плоскости, разделим мысленно заклепочный стержень сечением mk и отбросим нижнюю часть (рис.5.17). Внутренние усилия, передающиеся по этому сечению от нижней части на верхнюю, будут уравновешивать силу т. е. будут действовать параллельно ей в плоскости сечения, и в сумме дадут равнодействующую, равную . Следовательно, напряжения, возникающие в этом сечении и действующие касательно к плоскости сечения, это — касательные напряжения . Обычно принимают равномерное распределение этих напряжений по сечению. Тогда при диаметре заклепки d на единицу площади сечения будет приходиться напряжение:

Величина допускаемого касательного напряжения , или, как говорят, допускаемого напряжения на срез, принято определять в виде: . Зная , мы напишем условие прочности заклепки на перерезывание в таком виде:

т. е. действительное касательное напряжение в материале заклепки должно быть равно допускаемому , или меньше его.

Из этого условия можно определить необходимый диаметр заклепок, если задаться их числом, и наоборот. Обычно задаются диаметром заклепочных стержней d в соответствии с толщиной t склепываемых частей (обычно ) и определяют необходимое число заклепок :

Знаменатель этой формулы представляет собой ту силу, которую безопасно может взять на себя каждая заклепка.

Пусть ; тогда


Рис.5.18

При выводе формулы расчета заклепки на перерезывание, помимо оговоренных, допущена еще одна неточность. Дело в том, что силы действующие на заклепку, не направлены по одной прямой, а образуют пару. Эта пара уравновешивается другой парой, образующейся из реакций соединенных листов на головку заклепки (рис.5.18) и ведет к появлению нормальных напряжений, действующих по сечению mk.

Кроме этих нормальных напряжений, по сечению mk действуют еще нормальные напряжения, вызванные тем, что при охлаждении заклепочный стержень стремится сократить свою длину, чему мешает упор головок заклепки в листы. Это обстоятельство, с одной стороны, обеспечивает стягивание заклепками листов и возникновение между ними сил трения, с другой — вызывает значительные нормальные напряжения по сечениям стержня заклепки. Особых неприятностей эти напряжения принести не могут. На заклепки идет сталь, обладающая значительной пластичностью; поэтому даже если бы нормальные напряжения достигли предела текучести, можно ожидать некоторого пластического удлинения стержня заклепки, что вызовет лишь уменьшение сил трения между листами и осуществление в действительности той схемы работы заклепки на перерезывание, на которую она и рассчитывается. Поэтому эти нормальные напряжения расчетом не учитываются.

При проектировании строительных конструкций применяется следующее условие прочности на срез для заклепок и болтовых соединений

(5.24)

где Q – поперечная сила, равная внешней силе F, действующей на соединение; Rbs – расчетное сопротивление на срез; – расчетная площадь сечения болта или заклепки; d – диаметр заклепки или наружный диаметр болта; ns – число срезов одного болта или заклепки; – коэффициент условий работы соединения, имеющий значения в интервале ; n – число болтов или заклепок.

Если величины F, Rbs, , ns известны, то задаваясь числом заклепок или болтов n, можно найти необходимый для обеспечения прочности на срез диаметр

. (5.25)

А зная d, F, Rbs, , ns, можно определить потребное число заклепок или болтов

(5.26)

Плоский изгиб

Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости проходящей через продольную ось. В поперечных сечениях бруса возникают изгибающие моменты. При изгибе возникают деформация, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.

Брус, работающий при изгибе, называется балкой. Конструкция, состоящая из нескольких изгибаемых стержней, соединенных между собой чаще всего под углом 90°, называется рамой.

Изгиб называется плоским или прямым, если плоскость действия нагрузки проходит через главную центральную ось инерции сечения (рис.6.1).

Рис.6.1

При плоском поперечном изгибе в балке возникают два вида внутренних усилий: поперечная сила Q и изгибающий момент M. В раме при плоском поперечном изгибе возникают три усилия: продольная N, поперечная Q силы и изгибающий момент M.

Если изгибающий момент является единственным внутренним силовым фактором, то такой изгиб называется чистым (рис.6.2). При наличии поперечной силы изгиб называется поперечным. Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.

Косой изгиб - изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб - изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

Далее будем рассматривать плоский изгиб, то есть все силы будем прилагать в плоскости симметрии балки.

Рис.6.2

Осваивать расчет балок и рам удобно, рассматривая по очереди следующие вопросы:

- Определение внутренних усилий в балках и построение эпюр внутренних усилий.

- Проверка прочности балок.

- Определение перемещений и проверка жесткости балок.

Решение этих вопросов получим в соответствующих разделах на примере конкретных задач.


На главную