Примеры решения экономических задач математическими методами

Основы оптимального управления

Управление и планирование являются наиболее сложными функциями в работе предприятий, фирм, служб администраций всех уровней. Долгое время они являлись монополией человека с соответствующей подготовкой и опытом работы. Совершенствование науки, техники, разделение труда усложнили принятие решений в управлении и планировании.

Для принятия обоснованного решения необходимо иметь и обработать большое количество информации, определяемое иногда астрономическими цифрами. Принятие ответственных решений, как правило, связано с большими материальными ценностями. В настоящее время недостаточно знать путь, ведущий к достижению цели. Необходимо из всех возможных путей выбрать наиболее экономичный, который наилучшим образом соответствует поставленной задаче.

Появление цифровых вычислительных машин и персональных компьютеров создало огромные возможности для развития науки, совершенствования методов планирования и управления производством. Однако без строгих формулировок задач, без математического описания процессов современный уровень управления и планирования не может быть достигнут.

Задачи управления и планирования обычно сводятся к выбору некоторой системы параметров и системы функций, которые приводят к экстремальным задачам следующего вида.

Требуется найти максимум функции

при условиях:

где f, gi — функции, x1, x2, ..., xп — параметры управления.

Выражение (а) называется функцией цели. Условия (b) и (с) представляют собой ограничения поставленной задачи. Условия (с) справедливы для многих задач, особенно экономических, когда параметры управления (xj) по своему физическом смыслу не могут быть отрицательными. Среди условий задачи могут быть равенства.

Система двух случайных величин Двумерная случайная величина До сих пор мы рассматривали дискретные случайные величины, которые называют одномерными: их возможные значения определялись одним числом. Кроме одномерных величин рассматривают также величины, возможные значения которых определяются несколькими числами. Двумерную случайную величину обозначают через (X, Y); каждая из величин X и Y называется компонентой (составляющей). Обе величины Х и Y, рассматриваемые одновременно, образуют систему двух случайных величин. Например, при штамповке стальных пластинок их длина и ширина представляют собой двумерную случайную величину.

Непрерывные случайные величины Функция распределения и ее свойства Пусть Х — непрерывная случайная величина, значения которой сплошь заполняют интервал (а, b). Теперь уже нельзя составить перечень всех возможных значений X, как это было сделано в случае дискретной случайной величины. Тем не менее существует способ задания любых видов случайных величин. Пусть х — действительное число. Обозначим вероятность события того, что Х примет значение, меньшее x, через F(x).

Основные распределения непрерывных случайных величин Равномерное распределение Определение. Распределение вероятностей называется равномерным, если на интервале возможных значений случайной величины плотность распределения является постоянной.

Некоторые элементы математической статистики Задачи математической статистики Первой задачей математической статистики является указание методов сбора и группировки статистических сведений, которые получены в результате экспериментов или наблюдений. Вторая задача — это разработка методов анализа статистических данных: оценки неизвестных вероятности события, а также функции и параметров распределения; оценка зависимости случайной величины от других случайных величин; проверка статистических гипотез о виде и величинах параметров неизвестного распределения. Рассмотрим некоторые из этих вопросов.

Полигон и гистограмма Каждую пару значений (xi, ni) из распределения выборки можно трактовать как точку на координатной плоскости. Точно так же можно рассматривать и пары значений (хi, Wi) относительного распределения выборки. Ломаная, отрезки которой соединяют точки (xi, ni), называется полигоном частот. Ломаная, соединяющая на координатной плоскости точки (xi, Wi), называется полигоном относительных частот.

Асимметрия и эксцесс эмпирического распределения Нормальное распределение является одним из самых распространенных в применениях математической статистики. Для оценки отклонения эмпирического распределения от нормального используют характеристики, аналогичные для теоретического распределения

Элементы линейного программирования Общая постановка задачи Определение. Линейное программирование — наука о методах исследования и отыскания экстремальных (наибольших и наименьших) значений линейной функции, на неизвестные которой наложены линейные ограничения. Эта линейная функция называется целевой, а ограничения, которые математически записываются в виде уравнений или неравенств, называются системой ограничений.

Элементы аналитической геометрии в n-мерном пространстве Дано n-мерное пространство, точки которого имеют координаты (x1, x2, . . . ,xп). Определение. Множество точек n-мерного пространства, координаты которых удовлетворяют уравнению где хотя бы одно из чисел а1, a2, ..., an отлично от нуля, называется гиперплоскостью п-мерного пространства.

Решение систем m линейных неравенств с двумя переменными

Графический метод Постановка задачи Наиболее простым и наглядным методом линейного программирования является графический метод. Он применяется для решения задач ЛП с двумя переменными, заданными в неканонической форме, и многими переменными в канонической форме при условии, что они содержат не более двух свободных переменных. С геометрической точки зрения в задаче линейного программирования ищется такая угловая точка или набор точек из допустимого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) остальных в направлении наискорейшего роста.

Экономический анализ задач с использованием графического метода Проведем экономический анализ рассмотренной выше задачи по производству мороженого.

Симплексный метод Метод является универсальным, так как позволяет решить практически любую задачу линейного программирования, записанную в каноническом виде. Идея симплексного метода (метода последовательного улучшения плана) заключается в том, что начиная с некоторого исходного опорного решения осуществляется последовательно направленное перемещение по опорным решениям задачи к оптимальному. Значение целевой функции при этом перемещении для задач на максимум не убывает. Так как число опорных решений конечно, то через конечное число шагов получим оптимальное опорное решение. Опорным решением называется базисное неотрицательное решение.

Двойственность в линейном программировании Произвольную задачу линейного программирования можно определенным образом сопоставить с другой задачей линейного программирования, называемой двойственной. Первоначальная задача является исходной. Эти две задачи тесно связаны между собой и образуют единую двойственную пару.

Решение двойственных задач

Экономический анализ задач с использованием теории двойственности Рассмотрим задачу оптимального использования ресурсов, запишем ее математическую модель

Математическая дисциплина, занимающаяся изучением экстремальных (максимальных или минимальных) задач управления, планирования и разработкой методов их решения, получила название математического программирования.

Основное отличие задач математического программирования от условных экстремальных задач, рассмотренных в части 6, заключается в наличии неравенств в системе ограничений. Поэтому методы решения задач на условный экстремум с помощью множителей Лагранжа не могут быть применены.

В зависимости от вида функции цели и ограничений математическое программирование делится на линейное и нелинейное.

Наиболее разработанным разделом математического программирования является линейное программирование.

В задачах линейного программирования возможны случаи, когда параметры управления могут принимать лишь целые дискретные значения. При решении подобных задач используется целочисленное программирование.

В некоторых случаях исходные параметры задачи могут изменяться в некоторых пределах, для их решения применяется параметрическое программирование.

В настоящее время не существует общих и достаточно эффективных методов решения задач нелинейного программирования. Лишь для определенного класса нелинейных задач, система ограничений которых линейна, а целевая функция нелинейна, но обладает свойством выпуклости, разработаны достаточно эффективные методы, получившие название методов выпуклого программирования.

На практике часто приходится сталкиваться с ситуациями, в которых необходимо принимать решения при наличии двух или более сторон, имеющих различные цели. Результаты любого действия каждой из сторон зависят от решений партнеров. В экономике подобные ситуации встречаются довольно часто. Для решения задач с конфликтными ситуациями используют математические методы теории игр.

Динамическое программирование — один из разделов методов оптимизации, в котором процесс принятия решения может быть разбит на отдельные этапы. В основе метода лежит принцип оптимальности, разработанный Р. Беллманом.

Сетевые модели, в основе которых лежит теория графов, позволяют проводить их оптимизацию, а также совокупность расчетных и организационных мероприятий по управлению комплексами работ при создании новых изделий и технологий.

Цель изучения системы массового обслуживания состоит в том, чтобы контролировать их характеристики для проведения оптимизации системы в целом.

Рассмотрение моделей управления запасами преследует цель выбора для предприятий оптимальных расходов на доставку, хранение комплектующих материалов и ресурсов, необходимых для изготовления изделий.

Пример. Найти предел.

  Для самостоятельного решения:

8)  - не определен.


На главную