Примеры решения экономических задач математическими методами

Несобственные интегралы

При рассмотрении определенного интеграла как предела интегральных сумм предполагалось, что подынтегральная функция, во-первых, задана на конечном отрезке и, во-вторых, ограничена. Данное выше определение определенного интеграла не имеет смысла при невыполнении хотя бы одного из этих условий. Нельзя разбить бесконечный интервал на конечное число отрезков конечной длины; при неограниченной функции интегральная сумма не имеет предела. Тем не менее возможно обобщить понятие определенного интеграла и на эти случаи, с чем и связано понятие несобственного интеграла.

Определение. Пусть функция f(x) определена на промежутке [а, +) и интегрируема на любом отрезке [a, R], R > 0, так что интеграл

имеет смысл. Предел этого интеграла при R  называется несобственным интегралом с бесконечным пределом интегрирования:

Если этот предел конечен, говорят, что несобственный интеграл (7.16) сходится, а функцию f(x) называют интегрируемой на бесконечном промежутке [а, ); если же предел в (7.16) бесконечен или не существует, то говорят, что несобственный интеграл расходится.

Функции нескольких переменных Евклидово пространство Em Евклидова плоскость и евклидово пространство Как мы знаем, множество всех упорядоченных пар вещественных чисел (x, у) называется координатной плоскостью и каждая точка на ней характеризуется парой своих координат: М(x, у).

Частные производные функции нескольких переменных Частные производные первого порядка Пусть функция двух переменных z = f(x, у) определена в некоторой окрестности точки М(x, у) евклидова пространства Е2. Частная производная функции z = f(x, у) по аргументу x является обыкновенной производной функции одной переменной х при фиксированном значении переменной у и обозначается как

Локальный экстремум функции нескольких переменных Определение и необходимые условия существования локального экстремума Пусть функция z = f(x, y) определена на множестве {М}, а М0 (x0, у0) — некоторая точка этого множества. Определение. Функция z = f(x, у) имеет в точке М0 локальный максимум (минимум), если существует такая окрестность точки M0, принадлежащая {М}, что для любой точки М(х, у) из этой окрестности выполняется неравенство f(M) ≤ f(M0) (f(М) ≥ f(М0)); для случая функции трех и более переменных локальный экстремум определяется аналогично.

Оптимальное распределение ресурсов Рассмотрим типичную задачу оптимального распределения ресурсов на примере функции выпуска и = а0ху2 при допущении, что функция затрат на ресурсы x и у линейна, т.е. имеет вид и = Р1х+Р2у, где P1 и Р2 — соответствующие цены на эти факторы.

Элементы теории обыкновенных дифференциальных уравнений Дифференциальные уравнения занимают особое место в математике и имеют многочисленные приложения в большом спектре наук. Исследования природных процессов и изучение закономерностей общественных процессов приводят к построению математических моделей, основой которых являются дифференциальные уравнения. В дифференциальных уравнениях неизвестная функция содержится вместе со своими производными. Основной задачей теории дифференциальных уравнений является изучение функций, представляющих собой решения этих уравнений.

Уравнения с разделяющимися переменными Дифференциальное уравнение вида где f1(x) и f2(y) — непрерывные функции, называется уравнением с разделяющимися переменными. Подчеркнем, что правая часть уравнения представляет собой произведение, в котором один сомножитель зависит только от х, а другой — только от у. Метод решения такого вида уравнений носит название разделения переменных

Линейные уравнения первого порядка Уравнение вида где р(х) и q(x) — непрерывные функции, называется линейным дифференциальным уравнением первого порядка. Неизвестная функция и ее производная входят в указанное уравнение в первой степени — линейно, что и объясняет название уравнения.

Дифференциальные уравнения второго порядка Основные понятия теории Дифференциальным уравнением второго порядка называется уравнение вида где х — независимая переменная, у — искомая функция, у' и у" — соответственно ее первая и вторая производные.

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами Линейным дифференциальным уравнением второго порядка называется уравнение вида где y – искомая функция, а р(х), q(x) и f(x) – известные функции, непрерывные на некотором интервале (a, b).

Краевая задача для дифференциального уравнения второго порядка Как было сказано в п. 10.1, в силу основной теоремы существования и единственности решения для уравнения второго порядка определена задача Коши, когда в точке х = x0 заданы значения неизвестной функции и ее производной

Аппарат дифференциальных уравнений в экономике В этой главе мы рассмотрим некоторые примеры применения теории дифференциальных уравнений в непрерывных моделях экономики, где независимой переменной является время t. Такие модели достаточно эффективны при исследовании эволюции экономических систем на длительных интервалах времени; они являются предметом исследования экономической динамики.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Рассмотрим модель рынка с прогнозируемыми ценами. В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. Однако спрос и предложение в реальных ситуациях зависят еще и от тенденции ценообразования и темпов изменения цены. В моделях с непрерывными и дифференцируемыми по времени t функциями эти характеристики описываются соответственно первой и второй производными функции цены P(t).

Аналогичным образом вводится понятие несобственного интеграла по промежутку (-, b]:

Наконец, несобственный интеграл с двумя бесконечными пределами можно определить как сумму несобственных интегралов (7.16) и (7.17):

где с — любое число.

Геометрический смысл несобственного интеграла первого рода заключается в следующем: это площадь бесконечной области (рис. 7.8), ограниченной сверху неотрицательной функцией f(x), снизу — осью Оx, слева — прямой х = а.

Рассмотрим несколько примеров несобственных интегралов.

Здесь пришлось разделить исходный интеграл на два и к каждому из них применить определение несобственного интеграла.

Пример 4. , где α — некоторое положительное число.

Решение. Рассмотрим разные случаи для числа α.

1. При α = 1 для любого R > 0 имеем

т.е. конечного предела не существует и несобственный интеграл расходится.

2. При α ≠ 1 для любого R > 0 получаем

Следовательно, данный интеграл сходится при α > 1 и расходится при α ≤ 1.

В приведенных выше примерах сначала с помощью первообразной вычислялся интеграл по конечному промежутку, а затем осуществлялся переход к пределу. Между тем если для функции f(x) существует первообразная F(x) на всем промежутке интегрирования [а,), то по формуле Ньютона-Лейбница

Отсюда следует, что несобственный интеграл существует (сходится) в том и только в том случае, когда существует конечный предел

и тогда можно записать:

Аналогичный вывод справедлив и для несобственных интегралов вида (7.17) и (7.18):

Иными словами, формула Ньютона-Лейбница (основная формула интегрального исчисления) применима и в случае, когда пределы интегрирования бесконечны.

УПРАЖНЕНИЯ

Вычислить определенные интегралы.

Найти площади фигур, ограниченных следующими линиями.

Найти объемы тел, образованных вращением вокруг оси Ох фигуры, ограниченной следующими линиями.

Вычислить несобственные интегралы в случае их сходимости.

7.32. Найти площадь, заключенную между кривой у = и ее асимптотой при х ≥ 0.

7.33. Найти объем тела, образованного вращением вокруг оси Ох дуги кривой у = e-x от х = 0 до х = +.

Решить задачи с экономическим содержанием.

7.34. Найти стоимость перевозки М т груза по железной дороге на расстояние 1 км при условии, что тариф у перевозки одной тонны убывает на а р. на каждом последующем километре.

7.35. Мощность у потребляемой городом электроэнергии выражается формулой

где t — текущее время суток. Найти суточное потребление электроэнергии при а = 15000 кВт, b = 12000 кВт.

 Пример. Если , то при х®0 , т.е. функция a - бесконечно малая порядка 2 относительно функции b.

 Пример. Если , то при х®0   не существует, т.е. функция a и b несравнимы.

 

Свойства эквивалентных бесконечно малых.

 1) a ~ a

 2) Если a ~ b и b ~ g, то a ~ g

 3) Если a ~ b, то b ~ a

 4) Если a ~ a1 и b ~ b1 и , то и  или .

Следствие: а) если a ~ a1 и , то и

 б) если b ~ b1 и , то

Свойство 4 особенно важно на практике, т.к. оно фактически означает, что предел отношения бесконечно малых не меняется при замене их на эквивалентные бесконечно малые. Этот факт дает возможность при нахождении пределов заменять бесконечно малые на эквивалентные им функции, что может сильно упростить вычисление пределов.


На главную