Атомный проект Ядерный арсенал АЭС Ядерная энергия Физика Ядерные реакторы ТЭС Экология Начертательная геометрия Выполнение чертежей AutoCAD Технические чертежи Ремонт ПК Накопители Звуковая плата Математика

Тройные и двойные интегралы при решении задач

Замена переменных в тройных интегралах

При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение. Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U:

Требуется вычислить данный интеграл в новых координатах u, v, w. Взаимосвязь старых и новых координат описывается соотношениями: Предполагается, что выполнены следующие условия:
  1. Функции φ, ψ, χ непрерывны вместе со своими частными производными;
  2. Существует взаимно-однозначное соответствие между точками области интегрирования U в пространстве xyz и точками области U' в пространстве uvw;
  3. Якобиан преобразования I (u,v,w), равный отличен от нуля и сохраняет постоянный знак всюду в области интегрирования U.
Тогда формула замены переменных в тройном интеграле записывается в виде: В приведенном выражении означает абсолютное значение якобиана. Для вычисления тройных интегралов часто используются цилиндрические и сферические координаты.

Ниже приводятся примеры вычисления интегралов с использованием других преобразований координат.

При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение. Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U:

Найти объем области U, заданной неравенствами

Найти объем наклонного параллелепипеда, заданного неравенствами

 

Соленоидальное поле. Векторная трубка в соленоидальном поле

Определение.- соленоидальное поле, если .

Векторная линия обладает тем свойством, что в любой ее точке вектор касательной к линии совпадает с .

Векторная трубка – это совокупность векторных линий.

Пусть - сечения векторной трубки и - ее боковая поверхность. . Рассмотрим внешнюю нормаль к и применим теорему Остроградского: , в случае соленоидального поля. Итак, . На по определению векторной линии , поэтому или . Изменяя направление нормали на на противоположное получаем, что поток соленоидального поля через поперечные сечения векторных трубок постоянен.

На главную