ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУЧЕНИЯ ЯДЕРНОЙ ЭНЕРГИИ

Ядерные арсеналы
Ядерный арсенал России
Испытания первых термоядерных зарядов
Наземные и подземные ядерные взрывы
Испытания ядерного оружия в атмосфере
Подземные испытания на Невадском полигоне.
Средства доставки ядерного оружия
Авиация как средство доставки ядерного заряда
Термоядерное оружие в США
Термоядерная программа в СССР
Поражающие факторы ядерного взрыва
Ядерные заряды и боеголовки
Индийская ядерная программа
Атомная бомбардировка Хиросимы и Нагасаки
Ядерный арсенал США
Атомные подводные лодки и надводные корабли
Плутоний
Атомный проект
Академик РАН А.Д. Сахаров
О северном полигоне и ядерном оружии
Основные факторы риска
Атомные станции
Атомная физика
Принцип построения атомной энергетики.
Первая в мире атомная электростанция
Физический пуск реактора
Ядерные энергетические установки
Физика ядерного реактора
Реактор РБМК – 1000
Блок РБМК-1000
Авария на Чернобыльской АЭС
Меры по повышению безопасности РБМК
Автоматический химконтроль
ВВЭР - 1000
Системы теплотехнического контроля
Методы контроля
Расчет технико-экономических показателей АЭС
Российские атомные ледоколы
Энергетическая установка ледокола
Эффективная эквивалентная доза
Химическая дозиметрия
Физика атомного ядра
Решение задач по ядерной физике
Получение электрической энергии
Энергетический аудит
Энергосберегающие технологии
Гелиоэнергетика
Геотермальная энергетика
Космическая энергетика
Водородная энергетика
Биотопливная энергетика
Реакция деления
Плотность потока нейтронов
Реакторный теплоноситель
УРАН-235
Ячейка активной зоны реактора РБМК-1000
Кинетика реактора
Ядерная безопасность реактора
Коэффициент воспроизводства ядерного топлива
Средства управления реактором
Тепловые станции
Парогазовая электростанция (ПГЭС)
Эксплуатация энергоблоков
Безопасное обслуживание оборудования
Эксплуатация турбинных установок
Конденсатные насосы
Аварийные ситуации при сбросе нагрузки
Экология тепловой и атомной энергетики
Загрязнение атмосферного воздуха
Вредные выбросовы электростанций
Природоохранные технологии
Электрофильтры
Гетерогенно-каталитические методы
Очистка сточных вод
Радиоактивные вещества, образующиеся при работе АЭС
Аварийные ситуации на АЭС
Системы автоматизированного контроля в районе АЭС
Моделирование экологических систем

Информационное описание экосистем

Графика
Начертательная геометрия
Машиностроительное черчение
Сборочные чертежи
Выполнение чертежей
AutoCAD
Технические чертежи
История искусства
Архитектура
Техническое черчение
Задание прямого кругового конуса
Построение сечения сооружения
Построить проекции прямого геликоида
Выполнение сборочного чертежа
Нанесение размеров на сборочном чертеже
Шарнирная опора
Основные понятия кинематики
Сопротивление материалов
Сопротивление усталости
Сборочные и строительные чертежи
  • История развития черчения
  • Геометрические построения
  • Проекционное изображение
  • Виды, сечения и разрезы на чертежах
  • Машиностроительные чертежи
  • Эскизы деталей
  • Сборочные чертежи
  • Строительные чертежи
  • Архитектурные чертежи
  • Чертежи строительных конструкций
  • Инженерные чертежи
  • Чертежи строительных генеральных планов
  • Графическое оформление чертежей
  • Техническое обслуживание и ремонт персонального компьютера
    Блоки питания
    Мощность блоков питания
    Диагностика неисправностей блоков питания
    Клавиатура PC и XT
    Мышь
    Накопители
    Звуковая плата
    Высшая математика в экономике
    Использование функций в области экономики
    Основы дифференциального исчисления
    Несобственные интегралы
    Элементы линейной алгебры
    Основы оптимального управления
    Транспортная задача
    Динамическое программирование
    Математический анализ
    Тройные и двойные интегралы при решении задач
    Вычисление объемов с помощью тройных интегралов
    Метод замены переменной
    Замена переменных в двойных интегралах
    Замена переменных в тройных интегралах
    Определенный интеграл
    Площадь криволинейной трапеции
    Замена переменной в определенном интеграле
    Определение двойного интеграла
    Определение тройного интеграла
    Производная сложной функции
    Двойные интегралы в полярных координатах
    Двойные интегралы в произвольной области
    Двойные интегралы в прямоугольной области
    Геометрические приложения двойных интегралов
    Геометрические приложения криволинейных интегралов
    Геометрические приложения поверхностных интегралов
    Неопределенный интеграл
    Интегральный признак Коши
    Интегрирование по частям
    Интегрирование гиперболических функций
    Электротехника
    Теория электрических цепей
    Радиотехнические схемы
    Лабораторные работы
    Электрические цепи постоянного тока
    Лабораторный практикум по Сопромату
    Расчет напряжений и деформаций валов
    Расчет балок на жесткость
    Совместное действие изгиба и кручения
    Лабораторный практикум
    Расчет заклепок на срез
    Механические испытания на изгиб

    Контрольная работа

    Процедура ступенчатого пуска и ядерная безопасность реактора

    Факт, что время стабилизации плотности нейтронов в подкритическом реакторе увеличивается по мере приближения реактора к критичности, накладывает свой отпечаток на организацию процедуры пуска реактора, в особенности, если начальная стадия подъёма органов компенсации реактивности из-за ограниченной чувствительности пусковой аппаратуры контроля нейтронного потока в реакторе выполняется “вслепую”.

     


     kэ(t)

     Реактор стал надкритичным

      kэ5

     1 kэ4 D

     Dk

      kэ3

     kэ2 Dk

     Dk

      kэ1

     t

     n(t)

     nу4

     Его мощность после началь- 

      ного скачка растёт по экс-

     поненциальному закону с

     установившимся периодом.

     Dn4 

     nу3

      Dn3

     nу2

     Dn2 

     nу1

     tу2 tу3 tу4 t

     0

     Рис. 13.3. Переходные процессы n(t) в подкритическом реакторе при шаговом подъёме поглотителей шагами одинаковой величины в процессе пуска реактора.

    Дифференциальные уравнения скоростей изменения эффективных концентраций предшественников запаздывающих нейтронов шести групп

    Переходные процессы при сообщении реактору отрицательной реактивности

    Переходные процессы при сообщении реактору положительных реактивностей

    Если требуется увеличить уровень мощности реактора, первоначально работавшего в критическом  режиме на малом уровне мощности Nр1, оператор должен сообщить реактору некоторую величину положительной реактивности, для чего достаточно переместить из критического положения на некоторое расстояние вверх любой стержень-поглотитель (или группу поглотителей).

    ОСНОВЫ КИНЕТИКИ ПОДКРИТИЧЕСКОГО РЕАКТОРА ПРИ ЕГО ПУСКЕ При бездействии энергетический реактор хранится в подкритическом состоянии. Реактору энергоблока АЭС, вообще говоря, состояние бездействия не свойственно; это, скорее, вынужденное состояние после срабатывания аварийной защиты реактора по серьёзным причинам, требующим значительного времени для их устранения, или плановая остановка реактора для перегрузки его активной зоны.

    Переходные процессы при изменениях степени подкритичности реактора Принципиально нам уже понятно, что переходный процесс в подкритическом реакторе при изменении степени подкритичности реактора от одного значения до другого должен быть процессом перехода величины плотности нейтронов n(t) от одного установившегося значения n1, соответствующего начальной степени подкритичности dkп1 до другого установившегося значения n2, соответствующего другому значению степени подкритичности dkп2. Поэтому единственное, что нас интересует сейчас, это характер этого переходного процесса, то есть ответ на вопрос, какой математической закономерности подчиняется переходный процесс.

    ИЗМЕНЕНИЯ ЗАПАСА РЕАКТИВНОСТИ ПРИ РАБОТЕ РЕАКТОРА ПОНЯТИЯ ОБЩЕГО И ОПЕРАТИВНОГО ЗАПАСА РЕАКТИВНОСТИ  РЕАКТОРА Энергетический ядерный реактор создаётся для работы на расчётной (номинальной) мощности в течение довольно длительного времени, называемого кампанией активной зоны реактора. Это означает тривиальную истину:  в течение всей кампании реактор должен оставаться критичным. Попробуйте представить себе, как создаётся первое критическое состояние реактора: активную зону реактора постепенно заполняют тепловыделяющими сборками до тех пор, пока в ней не начнётся самоподдерживающаяся цепная реакция деления. В этом случае говорят, что в активной зоне набрана первая критическая масса.

    УМЕНЬШЕНИЕ ЗАПАСА РЕАКТИВНОСТИ С ВЫГОРАНИЕМ ЯДЕРНОГО ТОПЛИВА Выгорание - процесс непрерывной убыли в работающем реакторе делящихся нуклидов, обусловленный поглощением ими нейтронов реакторного спектра.

    УМЕНЬШЕНИЕ ЗАПАСА РЕАКТИВНОСТИ ЗА СЧЁТ ШЛАКОВАНИЯ ЯДЕРНОГО ТОПЛИВА Шлакование топлива - это процесс накопления в работающем реакторе стабильных и долгоживущих продуктов деления, участвующих в непроизводительном захвате тепловых нейтронов и, тем самым, понижающих запас реактивности реактора.

    РОСТ ЗАПАСА РЕАКТИВНОСТИ  С ВОСПРОИЗВОДСТВОМ ЯДЕРНОГО ТОПЛИВА Воспроизводство ядерного топлива - это процесс накопления в работающем реакторе новых делящихся нуклидов, участвующих вместе с основным топливом (ураном-235) в реакции деления, и, тем самым, повышающих величину запаса реактивности реактора.

    При этом всё подчинено разумной осторожности: как бы не ввергнуть реактор в состояние мгновенной критичности, сообщив ему большую положительную реактивность раньше, чем появится возможность уверенно контролировать все изменения нейтронного потока штатными средствами измерения плотности нейтронов. Осторожность диктует следующие меры.

    а) Критическое положение подвижных поглотителей заранее должно быть рассчитано. Оператор заранее должен отчётливо представлять, до какой высоты ему предстоит поднимать поглотители от нижних концевых выключателей. Без проверенного и утверждённого компетентными ответственными лицами расчёта пускового критического положения органов СУЗ пуск реактора не разрешается.

    б) Последовательность и темп подъёма групп поглотителей задаётся специальной программой безопасного подъёма их при пуске. Суть этой программы состоит в том, что подъём поглотителей в критическое положение выполняется осторожными шагами, каждый из которых уменьшает величину степени подкритичности реактора не более чем на 0.15 bэ. Кроме того, между шагами должны выдерживаться временные паузы, большие по величине, чем время стабилизации подкритической плотности нейтронов в реальных условиях пуска.

    Ясно, что в начальной стадии подъёма поглотителей, когда реактор глубоко подкритичен, изменения плотности нейтронов с каждым шагом поглотителей вверх относительно малы. Поэтому нет никакого смысла делать значительные паузы между шагами, поскольку время практического установления подкритической плотности нейтронов даже при степени подкритичности, равной 0.02, составляет величину порядка сотых долей секунды. В таких условиях можно вообще не делать пауз между шагами, то есть выполнять подъём поглотителей практически непрерывно: этим можно сэкономить значительное время при пуске.

    На второй стадии пуска (начинающейся, как правило, тогда, когда группы поглотителей подняты на половину высоты до расчётного критического положения), начинаются активные меры предосторожности: между шагами выдерживаются временные паузы величиной в 1 минуту.

    На третьей, заключительной, стадии пуска (после подъёма поглотителей на высоту 80% от расчётной критической) паузы между шагами увеличиваются до 3 минут, а в некоторых случаях и величины одиночных шагов ограничиваются величиной 0.10 bэ, поскольку и время стабилизации плотности нейтронов в таких условиях - величина того же порядка, и сами величины устанавливающихся плотностей нейтронов становятся достаточно большими, чтобы их могла фиксировать штатная система контроля плотности нейтронов.

    В противном случае у слишком «смелого» оператора может сложиться такая ситуация. Не видя изменений плотности нейтронов по показаниям пускового прибора (стрелка которого застыла на нуле самой чувствительной шкалы), оператор браво поднимает группы поглотителей вверх шагами без пауз (считая, что раз плотность нейтронов не растёт, то реактор ещё далёк от критического состояния). На деле реактор может быть уже вплотную приблизился к критичности, а нулевое показание прибора-миллиамперметра свидетельствует только о том, что пусковые ионизационные камеры ещё не чувствуют нейтронов (величина плотности которых ещё не достигла порога чувствительности пусковых ионизационных камер). Ещё пару шагов поглотителями вверх - и реактор достигает критичности и переваливает его, становясь надкритичным, начиная быстрым темпом увеличивать мощность...  Много ли нужно, чтобы ввергнуть реактор в состояние мгновенной критичности? - Совсем немного (сообщить ему положительную реактивность r = bэ). Но даже если этого (тьфу-тьфу!) не произойдёт, то нетрудно себе представить, как будет выглядеть ситуация в тот момент, когда пусковая аппаратура СУЗ, наконец, почувствует нейтронный поток: стрелка пускового миллиамперметра с сумасшедшей скоростью срывается с нуля и мгновенно зашкаливает в правом конце шкалы, свидетельствуя рост мощности реактора с очень большой скоростью... И хорошо, если при таком развитии событий быстродействия срабатывания аварийной защиты (по сигналам недопустимо малого периода и превышения мощности над заданной) хватит на то, чтобы быстро остановить и заглушить реактор. Иначе, сами понимаете, вполне можно сжечь твэлы в активной зоне реактора.

    Вот для чего для каждого серийного типа активных зон тщательно разрабатывается и в последующем возводится в ранг закона для операторов Программа Безопасного Подъёма органов СУЗ в критическое положение. Следуя этой программе, вы спокойно и без излишних нервных перегрузок достигнете критичности реактора и начнёте работу в предусмотренных далее энергетических режимах.

    Реакторы АЭС типа ВВЭР пускаются несколько иначе (путём уменьшения концентрации борной кислоты в воде первого контура до критического значения), но здесь намеренно изложена процедура пуска реактора с помощью подвижных поглотителей, поскольку она позволяет немного легче усвоить принципиально те же ограничения по скорости высвобождения реактивности, с которыми нам предстоит познакомиться позже, при изучении кинетики борного регулирования.

    Краткие выводы

    В подкритическом реакторе плотность нейтронов со временем не падает до нуля, а благодаря наличию в активной зоне естественных или искусственных источников нейтронов, независимых от реакции деления, стабилизируется определённом уровне.

    Величина устанавливающейся плотности нейтронов в подкритическом реакторе определяется величинами:

    а) удельной мощности источников нейтронов в реакторе s;

    б) среднего времени жизни поколения нейтронов в реакторе l;

    в) степенью подкритичности реактора dkп,

    взаимно связанных зависимостью  .

    Переходные процессы n(t) в подкритическом реакторе представляют собой экспоненциальные переходы от одного (начального) установившегося значения nу1, соответствующего начальной степени подкритичности dkп1, до другого (конечного) значения nу2, соответствующего конечной степени подкритичности dkп2.

    По мере приближения реактора к критическому состоянию из подкритического величины устанавливающейся плотности нейтронов в реакторе нарастают всё более и более резко. Это требует от оператора РУ предельной осторожности в процессе уменьшения степени подкритичности при пуске реактора.

    Время практического установления подкритической плотности нейтронов после изменения степени подкритичности реактора

     

     определяется конечным значением степени подкритичности реактора. Следовательно, по мере приближения к критичности при пуске реактора время стабилизации плотности нейтронов растёт. Это требует от оператора РУ дополнительных мер предосторожности при пуске, заключающихся в осуществлении временных пауз между шагами уменьшения степени подкритичности с тем, чтобы перед каждым шагом уменьшения подкритичности значение плотности нейтронов обязательно стабилизировалось.

    На главную