ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУЧЕНИЯ ЯДЕРНОЙ ЭНЕРГИИ

Ядерные арсеналы
Ядерный арсенал России
Испытания первых термоядерных зарядов
Наземные и подземные ядерные взрывы
Испытания ядерного оружия в атмосфере
Подземные испытания на Невадском полигоне.
Средства доставки ядерного оружия
Авиация как средство доставки ядерного заряда
Термоядерное оружие в США
Термоядерная программа в СССР
Поражающие факторы ядерного взрыва
Ядерные заряды и боеголовки
Индийская ядерная программа
Атомная бомбардировка Хиросимы и Нагасаки
Ядерный арсенал США
Атомные подводные лодки и надводные корабли
Плутоний
Атомный проект
Академик РАН А.Д. Сахаров
О северном полигоне и ядерном оружии
Основные факторы риска
Атомные станции
Атомная физика
Принцип построения атомной энергетики.
Первая в мире атомная электростанция
Физический пуск реактора
Ядерные энергетические установки
Физика ядерного реактора
Реактор РБМК – 1000
Блок РБМК-1000
Авария на Чернобыльской АЭС
Меры по повышению безопасности РБМК
Автоматический химконтроль
ВВЭР - 1000
Системы теплотехнического контроля
Методы контроля
Расчет технико-экономических показателей АЭС
Российские атомные ледоколы
Энергетическая установка ледокола
Эффективная эквивалентная доза
Химическая дозиметрия
Физика атомного ядра
Решение задач по ядерной физике
Получение электрической энергии
Энергетический аудит
Энергосберегающие технологии
Гелиоэнергетика
Геотермальная энергетика
Космическая энергетика
Водородная энергетика
Биотопливная энергетика
Реакция деления
Плотность потока нейтронов
Реакторный теплоноситель
УРАН-235
Ячейка активной зоны реактора РБМК-1000
Кинетика реактора
Ядерная безопасность реактора
Коэффициент воспроизводства ядерного топлива
Средства управления реактором
Тепловые станции
Парогазовая электростанция (ПГЭС)
Эксплуатация энергоблоков
Безопасное обслуживание оборудования
Эксплуатация турбинных установок
Конденсатные насосы
Аварийные ситуации при сбросе нагрузки
Экология тепловой и атомной энергетики
Загрязнение атмосферного воздуха
Вредные выбросовы электростанций
Природоохранные технологии
Электрофильтры
Гетерогенно-каталитические методы
Очистка сточных вод
Радиоактивные вещества, образующиеся при работе АЭС
Аварийные ситуации на АЭС
Системы автоматизированного контроля в районе АЭС
Моделирование экологических систем

Информационное описание экосистем

Графика
Начертательная геометрия
Машиностроительное черчение
Сборочные чертежи
Выполнение чертежей
AutoCAD
Технические чертежи
История искусства
Архитектура
Техническое черчение
Задание прямого кругового конуса
Построение сечения сооружения
Построить проекции прямого геликоида
Выполнение сборочного чертежа
Нанесение размеров на сборочном чертеже
Шарнирная опора
Основные понятия кинематики
Сопротивление материалов
Сопротивление усталости
Сборочные и строительные чертежи
  • История развития черчения
  • Геометрические построения
  • Проекционное изображение
  • Виды, сечения и разрезы на чертежах
  • Машиностроительные чертежи
  • Эскизы деталей
  • Сборочные чертежи
  • Строительные чертежи
  • Архитектурные чертежи
  • Чертежи строительных конструкций
  • Инженерные чертежи
  • Чертежи строительных генеральных планов
  • Графическое оформление чертежей
  • Техническое обслуживание и ремонт персонального компьютера
    Блоки питания
    Мощность блоков питания
    Диагностика неисправностей блоков питания
    Клавиатура PC и XT
    Мышь
    Накопители
    Звуковая плата
    Высшая математика в экономике
    Использование функций в области экономики
    Основы дифференциального исчисления
    Несобственные интегралы
    Элементы линейной алгебры
    Основы оптимального управления
    Транспортная задача
    Динамическое программирование
    Математический анализ
    Тройные и двойные интегралы при решении задач
    Вычисление объемов с помощью тройных интегралов
    Метод замены переменной
    Замена переменных в двойных интегралах
    Замена переменных в тройных интегралах
    Определенный интеграл
    Площадь криволинейной трапеции
    Замена переменной в определенном интеграле
    Определение двойного интеграла
    Определение тройного интеграла
    Производная сложной функции
    Двойные интегралы в полярных координатах
    Двойные интегралы в произвольной области
    Двойные интегралы в прямоугольной области
    Геометрические приложения двойных интегралов
    Геометрические приложения криволинейных интегралов
    Геометрические приложения поверхностных интегралов
    Неопределенный интеграл
    Интегральный признак Коши
    Интегрирование по частям
    Интегрирование гиперболических функций
    Электротехника
    Теория электрических цепей
    Радиотехнические схемы
    Лабораторные работы
    Электрические цепи постоянного тока
    Лабораторный практикум по Сопромату
    Расчет напряжений и деформаций валов
    Расчет балок на жесткость
    Совместное действие изгиба и кручения
    Лабораторный практикум
    Расчет заклепок на срез
    Механические испытания на изгиб

    Контрольная работа

    КИНЕТИКА РЕАКТОРА

    Кинетика реактора - раздел теории реакторов, объясняющий и описывающий закономерности поведения реактора при ненулевых реактивностях.

    Имеются в виду закономерности переходных процессов изменений величины плотности потока тепловых нейтронов в активной зоне реактора во времени, поскольку эта величина пропорциональна мощности реактора, то есть той самой величине, контролем и управлением которой призван заниматься оператор реакторной установки.

    Создатель первого в мире ядерного реактора Э.Ферми первым обнаружил, что если в активной зоне изначально критического реактора переместить вверх любой стержень-поглотитель и оставить его на некоторое время в новом положении, то плотность потока тепловых нейтронов в реакторе при таком воздействии нарастает нелинейно: вначале измеритель нейтронной плотности показывает относительно быстрое нарастание плотности нейтронов, затем темп нарастания её замедляется (мощность как бы “замирает”), а затем вновь начинает увеличиваться всё более и более нарастающим темпом (рис.11.1) по закону, очень близкому к экспоненциальному. И если этот стержень-поглотитель не вернуть в первоначальное положение, величина плотности нейтронов (и пропорциональная ей величина мощности реактора) может со временем возрасти до очень большой величины, грозящей перегревом и разрушением твэлов активной зоны.

    При опускании стержня-поглотителя в исходное (критическое) положение величина плотности нейтронов в реакторе стабилизируется на том уровне, которого достиг реактор к моменту полного возвращения стержня в исходное критическое положение.

     Регулирующий стержень

     +DН  -DН

     n(t)

     no

     n(t)

      Начальный

     скачок мощности Экспоненциальный спад мощности

     реактора с установившимся периодом

     Экспоненциальный разгон мощности

     no  реактора с установившимся периодом Начальный

     скачок мощности 

      t t 

     а) б)

    Рис.11.1. Качественный характер переходных процессов изменения плотности нейтронов в реальном реакторе при сообщении критическому реактору: а) положительной реактивности; б) отрицательной реактивности  – постоянной величины.

    Особенности нейтронного поля в гетерогенном реакторе с отражателем Активная зона гетерогенного реактора состоит из множества геометрически одинаковых ячеек, каждая из которых представляет собой в общем случае тепловыделяющую сборку  твэлов вместе с относящимися к ней замедлителем и другими компонентами активной зоны, располагающимися как внутри ТВС, так и вне ее.

    Показатели неравномерности нейтронного поля в реакторах и методы снижения неравномерности Убедившись, что поле тепловых нейтронов в энергетическом реакторе существенно неравномерно, мы должны прийти к заключению, что эта неравномерность - явление явно негативное.

    Меры по уменьшению неравномерности поля тепловых нейтронов. Все мероприятия по уменьшению неравномерности распределения плотности потока тепловых нейтронов в энергетическом реакторе направлены в первую очередь на выравнивание величин Ф в объёме топлива этого реактора, поскольку именно от равномерности распределения этой величины в объёме топлива зависит равномерность тепловыделения в объёме всей активной зоны или равномерность распределения тепловой мощности в объёме активной зоны.

    ТЕМПЕРАТУРНЫЕ ЭФФЕКТЫ РЕАКТИВНОСТИ РЕАКТОРА

    Условия преимущественного проявления ПТЭР и ЯТЭР в реакторе. Несмотря на замечание о невозможности раздельного проявления ПТЭР и ЯТЭР, в практике эксплуатации энергетического реактора могут иногда создаваться условия, когда составляющие ТЭР проявляются одиночным порядком - если и не в чистом виде, то, по крайней мере, преимущественно.

    ЭЛЕМЕНТАРНАЯ КИНЕТИКА ТЕПЛОВОГО РЕАКТОРА Попробуем вначале описать переходный процесс изменений во времени величины средней по объёму активной зоны плотности тепловых нейтронов реактора при сообщении первоначально критическому реактору реактивности, опираясь только на то, что мы уже знаем о реакторе из предыдущих тем.

    Запаздывающие нейтроны шести усреднённых групп отличаются друг от друга по нескольким параметрам

    Среднее время жизни поколения нейтронов в тепловом реакторе Среднее время жизни мгновенных нейтронов. В соответствии с нашими представлениями о физических процессах, в которых участвуют все мгновенные нейтроны, время жизни “среднестатистического” теплового нейтрона, рождаемого в результате замедления мгновенного нейтрона, состоит из трёх слагаемых - следующих друг за другом времени деления, времени замедления и времени диффузии.

    КИНЕТИКА РЕАКТОРА  С УЧЁТОМ ЗАПАЗДЫВАЮЩИХ НЕЙТРОНОВ Здесь, как и в предыдущей теме, будет рассматриваться кинетика «холодного» реактора в точечно-параметрическом приближении. Как и ранее, оговариваемся, что в рамках нашего рассмотрения величина положительной или отрицательной реактивности первоначально критическому реактору сообщается самым простым и жёстким образом - мгновенным скачком

    Если из этого же критического положения опустить стержень-поглотитель ещё ниже и оставить в новом положении, картина убывания величины плотности нейтронов в реакторе оказывается качественно похожей: вначале следует относительно резкий скачок плотности нейтронов вниз, а затем темп спада этой величины замедляется , переходя в плавное её уменьшение по закону, близкому к экспоненциальному. И для того, чтобы остановить спад величины плотности нейтронов ниже нужного уровня, требуется поднять стержень-поглотитель в исходное (критическое) положение, при котором плотность нейтронов (и мощность реактора) стабилизируется на новом, более низком уровне.

    Что означает перемещение стержня-поглотителя из критического его положения вверх или вниз, нам уже понятно: это выведение реактора из критического состояния путём сообщения ему положительной или отрицательной реактивности. Следовательно, так реагирует ядерный реактор на сообщение ему положительной или отрицательной реактивности. И все описанные закономерности изменения плотности нейтронов во времени (начальные скачки, переходящие в экспоненциальные изменения), как было выяснено впоследствии, присущи не только реактору Э.Ферми, но и всем реакторам вообще (независимо от типа и класса).

    Эти закономерности особенно легко ощутимы для реакторов небольших размеров и на очень малых уровнях мощности; для того, чтобы их обнаружить, оказывается достаточным с помощью прибора-самописца сделать запись нескольких переходных процессов изменения плотности нейтронов при сообщении реактору положительной или отрицательной реактивности небольшой величины.  В реакторах больших размеров и на больших уровнях мощности эти закономерности действуют точно так же, как и в малых, но непосредственно обнаружить их практически нельзя из-за множества параллельно (одновременно) воздействующих на реактор других эффектов реактивности.

    Например, с изменением мощности реактора при неизменном расходе теплоносителя через его активную зону явно должна изменяться средняя температура топлива в его твэлах (что вызывает к действию доплеровское изменение реактивности реактора). По мере прогрева (или охлаждения) теплоносителя вступает в действие составляющая температурного эффекта реактивности теплоносителя. Причём, оба эффекта действуют одновременно с действием эффекта перемещения стержня-поглотителя так, что суммарная величина реактивности, воздействующей на реактор, естественно, не остаётся постоянной во времени.

    Поэтому, если следить за величиной тепловой мощности реактора при сообщении ему реактивности на значительном уровне мощности, то оказывается, что изменение величины тепловой мощности реактора вызывается не только той величиной реактивности, которая сообщается реактору путём перемещения стержня-поглотителя, но и величинами реактивности, рождаемыми в переходном процессе за счёт самого изменения тепловой мощности.

    Вот почему, для того, чтобы выделить закономерность изменения плотности нейтронов в реакторе от величины первоначально сообщаемой ему реактивности (независимо от её происхождения), надо ставить эксперимент на минимально контролируемом уровне мощности (МКУМ) реактора, так как только в таких условиях температурные, мощностные и прочие изменения реактивности пренебрежимо малы, а, следовательно, не исказят величину первоначально сообщённой реактору реактивности.

    Именно ради выяснения закономерностей переходных процессов изменения плотности нейтронов при сообщении критическому реактору реактивности тех или иных величины и знака в теории реакторов вводится условное идеальное понятие “холодного” реактора, то есть такого воображаемого реактора, в котором возмущение по реактивности приводит только к изменениям плотности нейтронов, но не влечёт за собой изменений тепловой мощности реактора. Тем самым, следовательно, исключается влияние на поведение реактора других сопутствующих изменениям мощности реактора эффектов реактивности. Иными словами, в первом приближении «холодным» можно считать реальный реактор, работающий на минимально контролируемом уровне мощности, поскольку любые переходные процессы на МКУМ не приводят к заметным изменениям тепловой мощности, а, следовательно, - и к существенным изменениям температур топлива, замедлителя и теплоносителя, влекущих возникновение искажающих кинетическую картину частных эффектов реактивности.

    Впоследствии, накладывая на картину выясненных кинетических закономерностей «холодного» реактора картины закономерностей проявления частных (температурного, мощностного, плотностного) эффектов реактивности, мы попытаемся воссоздать более сложные закономерности поведения величины тепловой мощности реактора, поскольку именно мощность реактора является предметом интереса для практика-оператора реакторной установки.

    В этом и будет состоять смысл наших усилий при изучении кинетики реактора.

    На главную