Обзор нетрадиционной энергетики и теплоэнергетики

Развитие солнечной энергии в России

В России в настоящее время имеется восемь предприятий, имеющих технологии и производственные мощности для изготовления 2 МВт солнечных элементов и модулей в год.

В 1992 г. на двух заводах объединения «Интеграл» в г. Минске освоено массовое производство солнечных элементов по технологии, разработанной в соответствии с программой «Экологически чистая энергетика» во Всероссийском научно-исследовательском институте электрификации сельского хозяйства Россельхозакадемии. Производственные мощности этих заводов позволяют выпускать ежегодно 1-2 МВт солнечных элементов и модулей без перестройки основного производства. В случае специализации нескольких заводов на выпуске солнечных элементов в России объем производства к 2000 г. может превысить 200 МВт в год, а к 2010 г. – 2000 МВт в год. Однако для этого необходима государственная инвестиционная поддержка новых энергетических технологий, в первую очередь технологии производства солнечного кремния. Имеющиеся в Министерстве топлива и энергетики скромные финансовые средства следует тратить не на демонстрационные проекты, а на создание новых технологий, оборудования и производственных мощностей. В качестве примера можно привести проект солнечной электростанции в Кисловодске мощностью 1 МВт. Ее стоимость в ценах 1992 г. составляет 1 млрд руб. По оценкам, этих средств достаточно для создания в течение 3-4 лет производства солнечных элементов по новой технологии с объемом 10 МВт в год, включая производство солнечного кремния.

Развитие фотоэлектрической отрасли промышленности потребует, помимо солнечного кремния, создания производства специального закаленного стекла с низким содержанием железа, алюминиевого проката, электронных регулирующих устройств. В России соответствующие производственные мощности имеются.

Известно, что солнечная электростанция, работающая на энергосистему, может не иметь суточного и сезонного аккумулирования, если ее мощность составляет 10-15 % от мощности энергосистемы. Это соответствует мощности СЭС 40 ГВт, для размещения которой потребуется площадь солнечных элементов около 400 км. Для расчета выработки электроэнергии СЭС разработан алгоритм, реализованный на языке FORTRAN в виде программы SVET. В состав последней входят подпрограмма GIS, разработанная с использованием результатов работ 30,31 и позволяющая рассчитать гистограммы часовых значений инсоляции, и подпрограмма TILT для расчета облученности различно ориентированных наклонных поверхностей, в том числе и в следящих системах. Используется анизотропная модель рассеянной солнечной радиации.

Для каждого часа эксплуатации определялась плотность распределения вероятности для мощности солнечного излучения, приходящего на поверхность СЭС.

Для средних многолетних месячных сумм суммарной радиации ошибка, при доверительной вероятности 0,9 и за период осреднения 30 лет, не превышает 8 %. Для метеостанций с меньшим периодом осреднения она может возрасти в 1,5-2 раза.

Погрешность оценки часовых сумм суммарной радиации, приходящей на горизонтальную поверхность, составляет 5-7 %.

По оценке, полученной прямым сравнением экспериментальных данных по поступлению солнечной радиации на наклонные поверхности и расчетных результатов для этих же поверхностей (программа SVET), погрешность в практически важных случаях не превышает 18 %. При этом, в большинстве случаев, погрешность расчета составляет от 1 до 8 %.

При выборе места расположения СЭС на территории России использованы данные метеостанций Астрахань, Сочи, Хужер (Байкал), Улан-Удэ, Борзя (Читинская область), Каменная степь (Воронежская область), Оймякон (Якутия), Хабаровск, Нижний Новгород.

Расчет и опыт эксплуатации СЭС показывает, что почасовая выработка электроэнергии, пропорциональная изменению солнечной радиации в течение дня, в значительной степени соответствует дневному максимуму нагрузки в энергосистеме.

Максимальные значения выработки электроэнергии за год для СЭС пиковой мощностью 1 млн кВт получены при южной ориентации с углом наклона к горизонту 45 ° для г. Хабаровска 1,846 млрд кВт.ч, для г. Борзя Читинской области 1,898 млрд кВт∙ч, для г. Улан-Удэ 1,703 млрд кВт∙ч, а при слежении по двум осям соответственно 2,51 млрд кВт∙ч, 2,607 и 2,345 млрд кВт∙ч. В европейской части России оптимальные районы размещения СЭС – это побережье Каспийского и Черного морей, Поволжье. Площадь центральной СЭС примерно в 4 раза превышает активную площадь солнечных элементов.

Поскольку удельная стоимость СЭС не зависит от ее размеров и мощности, в ряде случаев целесообразно модульное размещение СЭС на крыше сельского дома, коттеджа, фермы. Собственник СЭС будет продавать электроэнергию энергосистеме в дневное время и покупать ее у энергетической компании по другому счетчику в ночные часы. Преимуществом такого использования, помимо политики поощрения малых и независимых производителей энергии, является экономия на опорных конструкциях и площади земли, а также совмещение функции крыши и источника энергии.

При модульном размещении СЭС 1 млн кВт способна обеспечить электроэнергией 500 тыс. сельских домов и коттеджей, дачных поселков, а также для обогрева открытых и закрытых плавательных бассейнов. В сухом жарком климате Средней Азии рационально использовать установки для охлаждения зданий и сооружений, сельскохозяйственных объектов, птичников, хранения скоропортящихся продуктов, медицинских препаратов и т. д.


На главную