Обзор нетрадиционной энергетики и теплоэнергетики

К активным тепловым солнечным системам относятся плоские, а также параболические зеркальные концентраторы с одной и двумя степенями свободы и со специальными приводами, позволяющими системе «следить» за положением Солнца на небосводе (рис. 3.9).

Подобные концентраторы применяются в лабораториях, в некоторых случаях промышленных условиях в целях получения сверхчистых сплавов. Простейшие системы такого вида используются также в бытовых условиях – для приготовления пищи – и кипячения воды и получили название «солнечные кухни», применяемые в отдалённых районах, куда затруднён подвоз топлива.

а б

Рис. 3.9. Следящие солнечные системы

Преобразование солнечной энергии в теплоту, работу и электричество. Солнце – гигантское светило, имеющее диаметр 1 392 тыс. км. Его масса в 333 тыс. раз превышает массу Земли, а объем в 1,3 млн раз больше объема Земли. Химический состав Солнца: 81,76 % водорода, 18,14 % гелия и 0,1 % азота. Средняя плотность вещества Солнца равна 1 400 кг/м3. Внутри Солнца происходят термоядерные реакции превращения водорода в гелий и ежесекундно 4 млрд кг материи преобразуется в энергию, излучаемую Солнцем в космическое пространство в виде электромагнитных волн различной длины.

Солнечная радиация – это неисчерпаемый возобновляемый источник экологически чистой энергии.

Атмосфера Земли отражает 35 % этой энергии обратно в космос, а остальная энергия расходуется на нагрев земной поверхности, испарительно-осадочный цикл и образование волн в морях и океанах, воздушных и океанских течений и ветра.

Среднегодовое количество солнечной энергии, поступающей за 1 день на 1 м2 поверхности Земли, колеблется от 7,2 МДж/м2 на севере до 21,4 МДж/м2 в пустынях и тропиках.

Солнечная энергия может быть преобразована в тепловую, механическую и электрическую энергию, использована в химических и биологических процессах.

Солнечные установки находят применение в системах отопления и охлаждения жилых и общественных зданий, в технологических процессах, протекающих при низких, средних и высоких температурах. Они используются для получения горячей воды, опреснения морской или минерализированной воды, для сушки материалов и сельскохозяйственных продуктов и т. п. Благодаря солнечной энергии осуществляется процесс фотосинтеза и рост растений, происходят различные фотохимические процессы.

Известны методы термодинамического преобразования солнечной энергии в электрическую, основанные на использовании циклов тепловых двигателей, термоэлектрического и термоэмиссионного процессов, а также прямые методы фотоэлектрического, фотогальванического и фотоэмиссионного преобразований. Наибольшее практическое применение получили фотоэлектрические преобразователи и системы термодинамического преобразования с применением тепловых двигателей.

Солнечная энергия преобразуется в электрическую на солнечных электростанциях (СЭС), имеющих оборудование, предназначенное для улавливания солнечной энергии и ее последовательного преобразования в теплоту и электроэнергию. Для эффективной работы СЭС требуется аккумулятор теплоты и система автоматического управления.

Улавливание и преобразование солнечной энергии в теплоту осуществляется с помощью оптической системы отражателей и приемника сконцентрированной солнечной энергии, используемой для получения водяного пара или нагрева газообразного или жидкометаллического теплоносителя (рабочего тела).

Для размещения солнечных электростанций лучше всего подходят засушливые и пустынные зоны.

На поверхность самых больших пустынь мира общей площадью 20 млн км2 (площадь Сахары 7 млн км2 ) за год поступает большое количество солнечной энергии. При эффективности преобразования солнечной энергии в электрическую, равной 10 %, достаточно использовать всего 1 % территории пустынных зон для размещения СЭС, чтобы обеспечить современный мировой уровень энергопотребления.

Башенные и модульные электростанции. В настоящее время строятся солнечные электростанции в основном двух типов: СЭС башенного типа и СЭС распределенного (модульного) типа.

Идея, лежащая в основе работы СЭС башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965 г., а в 80-х гг. был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в др. странах.

В 1985 г. в п. Щелкино Крымской области была введена в эксплуатацию первая в СССР солнечная электростанция СЭС-5 электрической мощностью 5 МВт; 1600 гелиостатов (плоских зеркал) площадью 25,5 м2 каждый, имеющих коэффициент отражения 0,71.

Рис. 3.10. Схема работы Крымской экспериментальной

солнечной электростанции мощностью 5000 кВт

На рисунке обозначено: 1 – солнечные лучи; 2 – парогенератор-гелиоприемник; 3 – пароводяной аккумулятор энергии вместимостью 500 м3; 4 – гелиостаты с площадью зеркал 25,5 м2 (общее их количество 1000 штук).


На главную