Обзор нетрадиционной энергетики и теплоэнергетики

Глобальные ветры

К глобальным ветрам относятся пассаты и западный ветер. Пассаты образуются в результате нагрева экваториальной части земли. Нагретый воздух поднимается вверх, увлекая за собой воздушные массы с севера и юга. Вращение земли отклоняет потоки воздуха. В результате устанавливаются дующие круглый год с постоянной силой северо-восточный пассат в северном полушарии и юго-восточный – в южном. Пассаты дуют в приэкваториальной области, заключенной между 25 и 30° северной и южной широтами соответственно. В северном полушарии пассаты охватывают

11 % поверхности океанов, а в южной – 20 %. Сила пассатного ветра обычно составляет 2-3 балла. Западный ветер дует круглый год с запада на восток в полосе от 40 до 60° южной широты вдоль кромки дрейфующих льдов Антарктиды. Это самый сильный постоянный ветер. Его сила достигает 8-10 баллов и редко бывает менее 5 баллов.

В глубине материка нет постоянного направления ветра. Так как разные участки суши в разное время года нагреваются по-разному, можно говорить только о преимущественном сезонном направлении ветра. Кроме того, на разной высоте ветер ведет себя по-разному, а для высот до 50 метров характерны «рыскающие» потоки.

Потенциал атмосферы можно вычислить, зная ее массу и скорость рассеяния энергии. Для приземного слоя толщиной в 500 м. энергия ветра, превращающаяся в тепло, составляет примерно 82 трлн кВт∙ч в год. Конечно, всю ее использовать невозможно, в частности, по той причине, что часто поставленные ветряки будут затенять друг друга. В то же время энергия ветра, в конечном счете, вновь превратится в тепло.

Среднегодовые скорости воздушных потоков на стометровой высоте превышают 7 м/с. Если выйти на высоту в 100 метров, используя подходящую естественную возвышенность, то везде можно ставить эффективный ветроагрегат. На рис. 2.2 показаны области энергии среднегодовых потоков ветра Европейской части стран СНГ. Если взять только нижний 100-метровый слой и поставить установку на 100 км2, то при установленной мощности около 2 млрд кВт можно выработать за год 5 трлн кВт∙ч, что в 2 раза больше гидроэнергетического потенциала стран СНГ.

Местные ветры

Первыми для плавания использовались местные ветры. К ним относятся бризы. (Бриз [фр. brise] – свежий ветер.) Бризы – это легкие ветры, окаймляющие берега материков и больших островов, вызываемые суточным колебанием температуры. Их периодичность обусловлена различием температуры суши и моря днем и ночью. Днем суша нагревается быстрее и сильнее, чем море.

Теплый воздух поднимается над береговой полосой, а на его место устремляется прохладный воздух с моря – морской бриз. Ночью берег охлаждается быстрее и сильнее, чем море, поэтому теплый воздух поднимается над морем, а его замещает холодный воздух с суши – береговой бриз.

Рис. 2.2. Среднегодовые потоки энергии ветра на стометровой высоте

Вторыми, постоянно дующими ветрами, являются муссоны. (Муссон [арабск. мавсим] – время года) Эти ветры дуют в Индийском океане и связаны с сезонным изменением температуры материка и океана. Летом солнечные лучи сильнее нагревают сушу, и ветер дует с моря на сушу. Зимой муссон дует с суши на море. Вращение земли вызывает появление сил Кориолиса, которые отклоняют муссоны вправо. Поэтому летом дуют юго-западные муссоны, а зимой – северо-восточные. Муссоны достигают большой силы и вызывают в Индийском океане соответствующие местным ветрам поверхностные течения.

Принцип действия всех ветродвигателей один: под напором ветра вращается ветроколесо с лопастями, передавая крутящий момент через систему передач валу генератора, вырабатывающего электроэнергию, водяному насосу. Чем больше диаметр ветроколеса, тем больший воздушный поток оно захватывает и тем больше энергии вырабатывает агрегат.

Принципиальная простота дает здесь исключительный простор для конструкторского творчества, но только неопытному взгляду ветроагрегат представляется простой конструкцией.

Рис. 2.3. Крыльчатый ветродвигатель

Традиционная компоновка ветряков с горизонтальной осью вращения (рис. 2.3) – неплохое решение для агрегатов малых размеров и мощностей. Когда же размахи лопастей выросли, такая компоновка оказалась неэффективной, т. к. на разной высоте ветер дует в разные стороны. В этом случае не только не удается оптимально ориентировать агрегат по ветру, но и возникает опасность разрушения лопастей.

Кроме того, концы лопастей крупной установки, двигаясь с большой скоростью, создают шум. Однако главное препятствие на пути использования энергии ветра все же экономическая – мощность агрегата остается небольшой и доля затрат на его эксплуатацию оказывается значительной. В итоге себестоимость энергии не позволяет ветрякам с горизонтальной осью оказывать реальную конкуренцию традиционным источникам энергии.

По прогнозам фирмы «Боинг» (США) на текущее столетие длина лопастей крыльчатых ветродвигателей не превысит 60 м, что позволит создать ветроагрегаты традиционной компоновки мощностью 7 МВт. Сегодня самые крупные из них – вдвое «слабее». В большой ветроэнергетике только при массовом строительстве можно рассчитывать на то, что цена киловатт-часа снизится до десяти центов.

Маломощные агрегаты могут вырабатывать энергию примерно втрое более дорогую. Для сравнения отметим, что серийно выпускавшийся в 1991 г. НПО «Ветроэн» крыльчатый ветродвигатель имел размах лопастей 6 м и мощность 4 кВт. Его киловатт-час обходился в 8...10 коп.


На главную