Экология тепловой и атомной энергетики

Методы и модели искусственного интеллекта

Мем № 19: «Обладая возможностью запоминать и взаимосвязывать огромное число каузальных сил, компьютер может нам помочь справляться с проблемами на гораздо более глубоком, чем обычно уровне. Он может просеивать громадные массивы данных, чтобы отыскать едва уловимые образцы, помочь собрать разрозненные "крупицы информации" в большое по объему и значению целое... Можно ожидать, что компьютеры углубят всю культуру суждения о причинности, усиливая наше понимание взаимосвязанности вещей, помогая нам синтезировать значимое "целое" из вихря кружащихся вокруг нас разрозненных данных»

Э. Тоффлер ["Третья волна", цит. по: Леонов, URLв].

Развитие концепции искусственного интеллекта

Современные исследователи экономики, истории, философии и геополитики признают уже как свершившийся факт начало эры "Третьей волны", концепция которой описана и сформулирована в известной книге американского футуролога Э. Тоффлера. Третья волна – зарождение цивилизации, в которой доминирующим ресурсом развития становятся Информация и Знание. В этой связи наступает переосмысление наших взглядов на компьютеры и информационные технологии [Райс, 1998, Смолл, 1997].

Однако и сами традиционные компьютерные технологии в предшествующее десятилетие столкнулись с лавинообразным ростом информации, которую не в состоянии обработать. На первый план выдвинулись трудно формализуемые проблемы и задачи, оперирующие с нечеткими множествами [Заде, 1974; Орловский, 1981; Масалович, 1995, URL]. Необходимость бесконечно создавать терабайты программного обеспечения вылилась в "творческий" кризис, выход из которого связан с переходом на качественно новый информационно-технологический уровень, который могут обеспечить только системы искусственного интеллекта [Нильсон, 1973, Хант, 1978; Уинстон, 1980; Лорьер, 1991]. Поэтому дальнейшее развитие средств компьютеризации во всем мире проходит под знаком программы "Вычисления в Реальном мире" (Real World Computing – RWC), инициированной Японией в 1992 г. [Горбань с соавт., 1998].  В ней речь идет прежде всего о том, чтобы дать вычислительным и управляющим системам возможность самостоятельно, без помощи "переводчика"-человека воспринимать сигналы внешнего мира и воздействовать на него. Авторы программы огромную роль – до 30-40% ее содержания – отводят развитию систем искусственного интеллекта, исследованию естественных и созданию искусственных нейросетевых систем.

Искусственный интеллект ИИ (artificial intelligence) обычно трактуется как свойство автоматических систем брать на себя отдельные функции мыслительной способности человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий [Сотник, URL]. Речь идет, в первую очередь, о системах, в основу которых положены принципы обучения, самоорганизации и эволюции при минимальном участии человека, но привлечении его в качестве учителя и партнёра, гармоничного элемента человеко-машинной системы.

Естественно, что попытки создать ИИ на базе компьютеров начались на заре развития компьютерной техники. Тогда господствовала компьютерная парадигма, ключевыми тезисами которой утверждалось, что машина Тьюринга является теоретической моделью мозга, а компьютер – реализацией универсальной машины и любой информационный процесс может быть воспроизведён на компьютере. Такая парадигма была доминирующей долгое время, принесла много интересных результатов, но главной задачи – построения ИИ в смысле моделирования мышления человека, так и не достигла. Компьютерная парадигма создания ИИ, потерпевшая крах в связи с неправильным набором ключевых предпосылок, логично трансформировалась в нейроинформатику, развивающую некомпьютерный подход к моделированию интеллектуальных процессов. Человеческий мозг, оперирующий с нерасчленённой информацией, оказался значительно сложнее машины Тьюринга. Каждая человеческая мысль имеет свой контекст, вне которого она бессмысленна, знания хранятся в форме образов, которые характеризуются нечёткостью, размытостью, система образов слабо чувствительна к противоречиям. Система хранения знаний человека характеризуется высокой надёжностью вследствие распределённого хранения знаний, а оперирование с информацией характеризуется большой глубиной и высоким параллелизмом.

Переработка информации в любых интеллектуальных системах основывается на использовании фундаментального процесса – обучения. Образы обладают характерными объективными свойствами в том смысле, что разные распознающие системы, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. Именно эта объективность образов позволяет людям всего мира понимать друг друга. Обучением обычно называют процесс выработки в некоторой системе специфической реакции на группы внешних идентичных сигналов путем многократного воздействия на распознающую систему сигналов внешней корректировки. Механизм генерации этой корректировки, которая чаще всего имеет смысл поощрения и наказания, практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Мы рассмотрели в предыдущем разделе два основных принципа обучения распознаванию образов – геометрический, основанный на построении разделяющих поверхностей в пространстве образов, и структурный (лингвистический), основанный на выделении базовых структурных признаков и отношений между ними. Однако, например, концепции построения нейронных сетей, нелинейных по своей природе, предоставляют качественно более мощные методы моделирования процесса распознавания, позволяющие воспроизводить чрезвычайно сложные зависимости. 

Интеллектуальные информационные системы могут использовать "библиотеки" самых различных методов и алгоритмов, реализующих разные подходы к процессам обучения, самоорганизации и эволюции при синтезе систем ИИ. Поскольку к настоящему времени нет ни обобщающей теории искусственного интеллекта, ни работающего образца полнофункциональной ИИ-модели, то нельзя сказать, какой из этих подходов является правильным, а какой ошибочным: скорее всего они способны гармонично дополнять друг друга.

Искусственный интеллект реализуется с использованием четырех подходов (с трудом удержимся, чтобы не произнести модное «парадигм»): логического, эволюционного, имитационного и структурного. Все эти четыре направления развиваются параллельно, часто взаимно переплетаясь.


На главную