Получение электрической энергии

Геотермальная энергетика

Производство электроэнергии, а также тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли.

В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотермальной энергии в качестве источника тепла.

Хозяйственное применение геотермальных источников распространено в: Исландии , Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.

Рис. 36. Схема двухконтурной ГеоТЭС на парогидротермах, так называемый «цикл Калины»

1-добываемая скважина; 2-гравитационный сепаратор; 3-парогенератор; 4-экономайзер;

5-барботажный абсорбер; 6-скважина отработанного материала; 7-турбогенератор;

8-смешивающий конденсатор; 9-паровой эжектор; 10-сборник конденсата; 11-«сухая» вентиляционная градирня; 12-расширитель 1-й ступени; 13- расширитель 2-й ступени;

14-шумоглушитель; 15-грязеотдилитель; 16-разрывной клапан.

В этой технологии в комплект оборудования добавляется парогенератор. На “горячей” стороне парогенератора конденсируется геотермальный пар; на “холодной“ стороне генерируется вторичный пар, полученный из питательной воды, химочищенной традиционными методами. При этом используется традиционная влажнопаровая турбина. В двухконтурной схеме за счет отсутствия газов во вторичном паре будет получен более глубокий вакуум в конденсаторе и этим будет компенсирована потеря потенциала геотермального пара в парогенераторе. С использованием термодинамической концепции максимальной работоспособности (эксергия) были проведены исследования двухконтурной технологической схемы ГеоТЭС на парогидротермах которые показали, что в двухконтурной технологии из 1 кг геотермального пара можно получить примерно (±1 - 2%) такую же работу на валу турбины, как и в одноконтурной схеме.

Рис. 37. Схема геотермальной электростанции с конденсационной турбиной и прямым использованием природного пара.

1-скважина; 2-турбина; 3-генератор; 4-насос; 5-конденсатор; 6-градирня; 7-компрессор; 8-сброс

Рис. 38. ГеоТЭС Нойштадт-ГлевеРис. 39. Верхнее-мутновская ГеоЭС. Камчатка, Россия.

Мощность 12 МВт.

Рис. 40. Мутновская ГеоЭС.

Камчатка, Россия.

Мощность 50 МВт.

Рис. 41. ГеоЭС Вайракей.

Новая Зеландия.

Мощность 181 МВт.

Перспективы развития отрасли: Все российские геотермальные электростанции расположены на Камчатке и Курилах, суммарный электропотенциал пароводных терм одной Камчатки оценивается в 1 ГВт рабочей электрической мощности. Российский потенциал реализован только в размере не многим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009): Мутновское месторождение: Верхне-Мутновская ГеоЭС установленной мощностью 12 МВт·э (2007) и выработкой 52,9 млн кВт·ч/год (2007) (81,4 в 2004), Мутновская ГеоЭС установленной мощностью

50 МВт·э (2007) и выработкой 360,7 млн кВт·ч/год (2007) (на 2006 год ведётся строительство, увеличивающее мощность до 80 МВт·э и выработку до 577 млн кВт·ч). Паужетское месторождение возле вулканов Кошелева и Камбального — Паужетская ГеоТЭС мощностью 14,5 МВт·э (2004) и выработкой 59,5 млн кВт·ч (на 2006 год проводится реконструкция с увеличением мощности до 18 МВт·э). Месторождение на острове Итуруп (Курилы): Океанская ГеоТЭС установленой мощностью 2,5 МВт·э (2009). Существует проект мощностью 34,5 МВт и годовой выработкой 107 млн кВт·ч.

Кунаширское месторождение (Курилы): Менделеевская ГеоТЭС мощностью 3,6 МВт·э (2009).

В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.

Количество энергии полученной геотермальными станциями в 2007 году. Таблица 1.

№ п.п.

Страна

Мощность, МВт

США

2687

Филиппины

1970

Индонезия

992

Италия

953

Япония

535

Новая Зеландия

472

Исландия

421

Сальвадор

204

Коста Рика

163

Кения

129

Никарагуа

87

Россия

79

Папуа-Новая Гвинея

56

Гватемала

53

Турция

38

Рис. 42. Карта геотермальных ресурсов Российской Федерации.

Этиленгликоль обладает хорошими теплообменными свойствами и не вызывает коррозии, но он токсичен.

3.1. Устройство горизонтальных грунтовых теплообменников

Монтаж горизонтальных грунтовых теплообменников производят в предварительно прорытые траншеи. Выбор механизмов при этом зависит от почвенных условий.

Сначала делается разметка трассы теплообменника и намечается место ввода в дом. По мере рытья траншеи грунт вынимается, и на дно траншеи укладывают трубопровод. Через каждые несколько метров трубопровод присыпается землей. Затем трубопровод вставляется в специально сделанное отверстие в фундаменте и заделывается.

После полной укладки проводится испытание трубопровода под давлением и засыпка траншеи. Причем первые 15 см засыпаются вручную. Дальнейшая работа по обратной засыпке выполняется бульдозером или другими механизмами.

3.2. Устройство вертикальных грунтовых теплообменников

На практике применяются следующие две конструктивные схемы вертикальных грунтовых теплообменников:

- "труба в трубе" - внутри обсадной трубы коаксиально располагается подающая теплоноситель труба, а поток теплоносителя, возвращающийся по межтрубному зазору, отбирает тепло грунта через стенку обсадной трубы;

- U-образная труба - по одной ветви теплоноситель подается вниз, а по другой возвращается обратно, при этом теплообмен с грунтом происходит по всей длине трубы, однако из-за меньших диаметров труб (при том же диаметре скважины) поверхность теплообмена получается существенно меньше, чем в предыдущем варианте.

Для большей гарантии все стыки труб, укладываемых в землю, должны соединяться термической сваркой, а не соединяться чисто механическими способами. Существуют два вида сварки - встык и с соединительными муфтами. При сварке в стык ровные концы труб нагревают, затем прикладывают друг к другу и сплавляют. При сварке с соединительными муфтами концы труб и поверхность муфты нагревают, а затем конец трубы вставляется в муфту и приваривается там. Полиэтиленовые трубы можно соединять обоими способами.

Вертикальные грунтовые теплообменники опускаются в предварительно пробуренные скважины. Чаще всего применяется мокрое вращательное или шнековое бурение.

При мокром вращательном бурении необходимо предусмотреть меры (использование стальных обсадных труб, глинизация), чтобы скважины оставались открытыми довольно значительное время до того, как в них будут вставлены трубы.

Герметичный грунтовый теплообменник (U-образный, или типа труба в трубе), предварительно испытанный под давлением, погружается в скважину. Перед погружением в заполненную буровым раствором скважину U-образный теплообменник заполняется водой, чтобы предотвратить его всплытие (см. ПРИЛОЖЕНИЕ 4). Для глубоких скважин к нижнему концу теплообменника подвешивается дополнительный груз.

Отверстия в выступающих над землей частях труб закрываются, чтобы в трубу не попал грунт.

Для обратной засыпки скважин можно использовать промытый песок или песчано-гравийную смесь. При опасности заражения водоносного горизонта грунтовыми водами, перетекающими вдоль стенки грунтового теплообменника, применяются герметики или цементные растворы.

Заключительный этап работ включает соединение выпусков вертикальных теплообменников в коллекторы и их ввод в здание через отверстия в фундаменте.


На главную